Hello.

I am Paul Kinlan.

A Developer Advocate for Chrome and the Open Web at Google.

I love the web. The web should allow anyone to access any experience that they need without the need for native install or content walled garden.

Using ML to Create a Simple Lighthouse Audit to Detect a Button

Paul Kinlan

I created a Lighthouse audit that uses machine learning to detect if an anchor tag looks like a button. This involved training a TensorflowJS model, building a custom Lighthouse gatherer to capture high-resolution screenshots, and processing those screenshots to identify anchors styled as buttons. The audit highlights these anchors in the Lighthouse report. The code for the scraper, web app, and Lighthouse audit are available on GitHub. While there are edge cases, this project demonstrates the potential of using ML for visual inspection tasks in web development.

Read More

Paul Kinlan

I trained a machine learning model to differentiate between buttons and links on web pages. Using a dataset of ~3000 button images and ~4000 link images, I trained a convolutional neural network (CNN) with added noise for better generalization. Preprocessing included grayscale conversion, dataset diversification with multilingual sites, and image compression. The model performed well in initial tests, correctly classifying button-like and link-like elements. Next, I'll build a web app for easier testing and a Lighthouse audit for website analysis.

Read More